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Abstract. We explore the selfdual plane of a twodimensional Potts model with vacancies 
and four-spin interactions, using mite-size scaling of transfer-matrix results Since the 
transfer matrix mnstrnction is based on the randomcluster representation of the Potts 
model, its application is not mtricted to an integer number q of Potts states For q < 4 
lhe selfdual plane mntains a critical legion belonging to the ordinav Potts universality 
das$ and a region of first-order transition points. The two regions are separaied by a tine 
of which a range mnsists of Potts Vicritical points, while anoiher range is of a filst-order 
nature. The p i n t  separating these two ranges is, for 0 < q < $, identified with the 
multicritical point of which =act mlution has, recently been given by Nienhuis d aL 

1. Introduction 

The normal critical p i n t  of the twodimensional, q4tate Potts model can be 
characterized as the end-point of the coexistence line of q phases that are related 
by q-fold permutation symmetry. Instead, tricritical Potts behaviour occurs when the 
coexistence includes not only these q phases, but also an additional phase, which 
is unrelated by symmetry. Such an extra phase may be introduced by means of 
vacancies, for instance by allowing an additional ‘empty’ state for each Fbtts variable, 
as was done in the renormalization analysis by Nienhuis er d [l]. This analysis yielded 
a satisfactory description of criticality, tricnticality, and first-order transitions in the 
Pots  model. An unfortunate consequence of the introduction of vacancies is that 
the model is no longer self-dual. Thus, the location of the tricritical point in the 
Potts model with vacancies involves the determination of two unhown parameters: 
the i3st one is adjusted such that the model undergoes a phase transition, and the 
second one such that the transition just changes from second- to iirst-order. 

Since a duality transformation of the Potts model on the square lattice transforms 
vacancies into 4-spin interactions and vice versa, it is, however, possible to construct a 
self-dual Potts model with both vacancies and &pin interactions [2]. In the ‘isotropic’ 
case (ie. with square symmetry) the Hamiltonian is given by [17, equation (3)J In 
particular we consider the randomcluster expansion of the partition function. The 
presence of vacancies and face variables introduces additional degrees of freedom 
with respect to the randomcluster model of Kasteleyn and Fortuin [3]. Apart from 
bond variables bi, there are also site variables uj and face variables fk, describing 
the vacancies and the &pin interactions respectively. AI1 variables have values 0 or 
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1, but with the restrictions that all four bi around a vacancy ( v j  = 0) are equal to 
zero, and that all four b; around a frozen face (fk = 0) are equal to one. Hence 
the vertices of a frozen face must be occupied ( v j  = 1). The Bolmnann weights are 
expressed using the notation of [17] as 

Y M M fiops, H W J Bate and B Nienhuis 

where U is the bond weight, P is the weight of a vacancy, R is the weight of a 
frozen face, A is the weight of the nearest-neighbour vacancy-vacancy interaction 
and B that of a nearest-neighbour pair of frozen faces. With these substitutions the 
partition function can be written 

ZEc(q,u, P , R , A ,  B) =.qN qN1(u/q)Nb(P/q)NvRNcApvBpc (2) 
I k J j , f X >  

where N is the total number of sites,~ NI is the number of independent loops closed 
by the non-zero bond variables, Nb = Cibi is the number of bond variables, 
N, = N - cj vj is the number of vacancies, N,  = N - Cb fk is the number 
of frozen faces, P, is the number of nearest-neighbour vacancy pairs and P, is the 
number of nearest-neighbour pairs of frozen faces.. The sum in (2) contains only those 
terms satisfying the restrictions on neighbouring variables: a vacancy (frozen face) is 
surrounded by four empty (covered) edges. The self-dual manifold is characterized 
bY 

U = q'l2 P = R q  A = B .  (3) 

For fixed q it is a plane parametrized, e.g. by A and P. Every point in this plane is 
self-dual and the plane is expected to be the locus of the phase transition between 
the low-temperature and the high-temperature regime. We expect to observe new 
universal behaviour in the self-dual plane, as we shall discuss below in some detail. 

For A = B = P = R = 0 (2) reduces to the ordinary Potts model. Thus, 
for small A, B, P and R, it is plausible that the model still belongs to the Potts 
universality class. However, when the weight P of the vacancies (and thus that of the 
frozen faces) is increased sufficiently,-new behaviour will occur. This behaviour will 
still depend on the interaction A between the vacancies, which applies, by duality, 
also to the frozen faces. For instance, let us introduce P' = P1/4 and A' = AP1/* 
and consider the limit P' --t 0 while keeping A' ked.  In this way we inhibit interfaces 
between vacancies and occupied sites (and thus, because of (3), between frozen and 
non-frozen faces). In this case the behaviour as a function of A' is quite clear. For 
not too large A', the pure Potts behaviour of the model is not modified, at least not 
in the thermodynamic limit. The Boltzmann weights of the allowed configurations do 
not change. However, for some value of A', the free energy of the states dominated 
by vacancies or frozen faces intersects with that of the pure Potts phase and a first- 
order transition takes place. Continuity requires that this transition is located on a 
first-order line, extending to some range of non-zero =lues of Pt.  
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Figure L (a) Weights which are of importance in the ordered Pons state and the slate 
dominated Ly frozen laces, where we have introduced B‘ = BR1lr and R‘ = R‘la. 
Non-zero bond variables appear as lattice edges, sites as dots, and ~ f r m n  faces as 
ausse~ .  The plus sign on the right indicates addition of the local weights. (6) The 
mrrespbnding king weigh& This mzrespondence holds in the limit where all sites 
belong to a permlating duster, ie. q b 4 in the selfdual plane. 

Here we make a distinction between two different q-ranges. For q < 4 the 
transition between the ordered and the disordered phase in the ordinary Potts model 
is continuous. For q > 4 this transition is first-order. Let us first consider the 
case q > 4. For small A, B, P and R the ordered and the disordered Potts 
states are in equilibrium. Therefore we expect two first-order transitions instead of 
one: simultaneously the ordered Pot$ state comes in phase equilibrium with a state 
dominated by frozen faces and the disordered Pots state with a state dominated by 
vacancies. In the first case only three vertices play a part (see figure l(u)). For systems 
far from criticality, ie. q > 4, the bond variables are approximately independent and 
can be summed out. Thus the vertices of figure l (a)  almost correspond with the 
vertices in the Ising model (see figure l(b)) and we expect an king critical point 
in the neighbourhood of the point wz/wl = wJw3 = fi- 1. This is only an 
approximate location because the vertices in figure l (u)  interact (via the number of 
random duster components) unlike the Ising vertices in figure l(b). This king Critical 
point is identified as the end-point of the first-order line in the self-dual plane. 
Moreover it is the critical end-point of an king line in the ordered phase bounded 
by the selfdual plane. By duality, there is also an king line in the disordered 
phase ending in a Critical end-point coinciding with the aforementioned critical end- 
point The Ising lines are the continuation of one another; but since they pertain 
to transitions between different pairs of phases, they are interpreted as distinct Wing 
lines. 

For q < 4 it is less clear what happens at large P. Let us follow the system along 
a path starting from A = 0 at some positive constant P, such that the vacancies 
and frozen faces are already abundant, but do not yet percolate. Then, the occupied 
sites are still able to sustain the critical Potts state. It is plausible that, when A is 
increased, the vacancies or frozen faces will percolate continuously. This transition 
may be identilied with the Potts tricritical one. When A (and thus also B) is further 
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increased, the system enters into the coexistence region of the phases in which the 
vacancies or the frozen faces have condensed. Furthermore, it is plausible that 
this tricritical h e  will connect to the aforementioned lirst-order line. The phases 
separated by both lines are of a similar type. 

Thus, the behaviour with increasing A will depend on the starting value of P. 
For smaller P, the transition to the coexistence region will become more abrupt 
since it is increasingly driven hy the pair attractions A and B. A higher-order critical 
point, that should perhaps be called a tri-tricntical point, may be expected where the 
tricritical line turns lirst-order. This multicritical point, which marks the end of the 
coexistence of the critical Potts phase with the condensed phases, is a good candidate 
for the interpretation of the exact solution given in [17J However this exact solution 
is only critical for 0 < q < $. Thus for $ < q < 4 the behaviour of the phase diagram 
in the self-dual plane is less clear. 

and q > 4, while plausible, contain 
some degree of speculation. For this reason we investigate the phase diagram in the 
self-dual plane using a numerical transfer-matrix technique. Section 2 explains the 
construction of the transfer matrix, in which the number q of Potts states appears as a 
continuous variable. Emite-size scahg ideas, useful for calculating critical exponents 
and the conformal anomaly are described in section 3. In section 4 we present our 
results, including the phase diagram and a number of critical exponents. We conclude 
with a summary in section 5. 

Y M M fiop, H W J Blite and B Nimhuis 

It is obvious that these scenarios for q < 

2. The transfer matrix 

The transfer-matrix technique used below is a generalization of that used for a study 
of the critical behaviour of the pure Potts model on the square lattice [4]. Thus 
we use the random-cluster representation of the present Potts model. We consider 
this model on a L x M lattice LM wrapped on a cylinder, such that the finite- 
size parameter L is the circumference of the cylinder. The lattice LM contains M 
rows of L sites, all faces between the first and the Mth row, and the lattice edges 
between nearest-neighbouring sites, but with the exclusion of those in the Mth row 

Using the weights given in section 1, the Potts partition sum Z ( M )  can be written 
(fiere W). 
as 

where the superscripts M indicate the M rows of the cylinder explicitly. 
As in [4], the partition sum is divided into a number of restricted sums according 

to Z ( M )  = E, ZAM) where the index a is called a connectivity; it is determined 
by the bond, site and face variables on LM such that it comprises the following 
information: 
1. which sites on the Mth row are vacant, 
2 which of the remaining sites on the Mth row are mutually connected by some 

path of non-zero bond variables on LM, 
3. which faces between the Mth row and the (M - 1)th row are frozen. 

This is precisely the information needed for use of CY as an index of the transfer 
mauix. A graphical illustration of a connectivity is given in the appendix (see 
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Figtare 2. Illustration of the action of the sparse matrices Ti' and T?. Bond variables 
appear as lattice edges, site variables as 0, and face variables as 0. ((I) The topmast 
row of the lattice jw before the eansfer matrix multiplication. The bond variables 
between the topmost sites have not yet been appended. (b) The topmost pan of the 
lattice after the multiplication of the restricted panition sum by the sparse matrix T:. 
This operation adds one new bond variable and one new face variable, and also takes 
into acmunt the interaction between the sile variables mnnected by the new bond, and 
that between the face variables on either side of that bond. If the new bond closes a 
h p ,  an exva weight faclor q is mntributed. (c) The same operation, but shifted over 
one lattice unit, is lepresented by the sparse matrix T:. (d)  The topmost part of the 
lattice after multiplication by the sparse matrix Tj which mmpletes the new m w s  of 
bond and face variables. The new row of site variables remains U) be added. (e) The 
topmost part of the lattice after the multiplication of the restricted partition sum by the 
sparse matrix T:. This operation adds one new vertical bond variable and one new site 
variable, and ako takes into acmunt the interaction between the site variables mnnected 
by the new bond, and that between the face variables on either side of that bond. If) 
The same operation, but shifted over one lattice unit, is represented by the sparse matrix 
T2y. 

figure Al). For actual calculations we require a representation of the connectivities 
subsequent positive integers. Such an explicit evaluation of the index Q as a function 
of the variables on L, will be given in the appendix. 

The action of the transfer matrix can be illustrated by appending a new row l,,, 
to the lattice: L,+, t L, U l,+l. The Boltzmann factor associated with the. new 
row, as well as the index p of the restricted partition sums on L,,,, depend only on 
a and the bond, site and face variables on l,,,. Therefore the restricted partition 
sums on L,,, can be expressed as a linear combination of those on L, 

in which the transfer matrix T,, is defined by 
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where n1 is the number of independent loops closed by the newly appended bond 
variables, n,,, n, and nf are the numbers of new non-zero bond variables, new 
vacancies and new frozen faces, respectively. The increase of the numbers of nearest- 
neighbour vacancy pairs and nearest-neighbour pairs of frozen faces is denoted as p ,  
and pf respectively. The sum in (6) is over those values of the new variables that 
satisfy the restrictions on neighbouring variables and lead to a connectivity p on the 
(M + 1)th row, given the connectivity CY on the Mth row. 

The transfer matrix, which extends the lattice in the vertical direction, can be 
decomposed as T = T.T6 where Th adds the horizontal bonds in the Mth row and 
the faces between the Mth and the (M + 1)th row, and Th adds the sites on the 
(M + 1)th row, and the vertical bonds between Mth and the (M + 1)th row. The 
weight of the newly added sites accounts for the vacancies. The weight of the newly 
added bonds does not only include that of the corresponding bond variables, but 
also that due to the vacancy-vacancy interactions along the bonds, and interactions 
between the face variables at either side of each bond. In order to save memory and 
computer time, T' and Th are decomposed into L sparse matrices 

Y M M Knop, H W J Bliite and B Nienhuis 

where z = h or v, and TT appends the ith bond with the associated site or face, 
taking into account the Boltzmann weights of the corresponding interactions. The 
matrices T! and are sparse: they contain at most three non-zero elements per 
column. Their action is illustrated in Egure 2(a)-f,f). After application of less than 2L 
sparse matrix multiplications, the topmost row of the lattice is incomplete. However, 
an adequate description of these incomplete mws requires precisely the Same set of 
connectivities as required for complete rows: only the states of the topmost faces and 
sites, and the way in which the topmost sites are connected, matter. For some further 
details on sparse matrix decompositions, including the transformation of (7) into a 
product of L ideentical sparse matrices, see [4]. 

The free energy per site in the limit of an infinitely long cylinder (M - CO) with 
finite size L is determined by 

where A:) is usually the largest eigenvalue of T. Furthermore, the correlation length 
E(L) is inversely proportional to the logarithm of the gap in the eigenvalue spectrum 
of T 

where A!) is the second-largest eigenvalue of T. In analogy with the treatment of 
the 'simple Whitney polynomial' in [4], the transfer matrix defined above does not 
keep track of magnetic correlations in the length direction of the cyhder. Thus we 
expect that, in the present case, the correlation length is associated with an energy-like 
correlation function. 

The two largest eigenvalues of T were calculated numerically by means of the 
direct iteration-Hessenberg algorithm described in [4], for several values of q, and 
for system sizes up to L = 9. For q = 1, simplified transfer matrix calculations are 
possible (see the appendix), and data up to L=14 were obtained. 
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3. Finite-size behaviour 

The theory of conformal invariance [S-91 provides direct relations between the 
finiteaize amplitudes of the free energy and the correlation length, and the critical 
exponents. The asymptotic finitesize dependence of the free energy per site is [q 

where c is the conformal anomaly of the model (which determines the set of critical 
exponents [S, 71). Furthermore the asymptotic behaviour of the correlation length for 
large L is determined by [9] 

L - - 27rx 
E(L) - 

where I is the scaling dimension of the correlation function pertaining to E. Thus, r 
can be estimated from the scaled gap I( L )  defined as 

Renormalization group arguments [lo] lead to finite-size scaling relations [Ill for 
the free energy and the correlation length 

where y, is the exponent of some scaling field t ,  1 is the scaling factor and d the 
dimensionality of the system. The non-singular part of the transformation is denoted 
g ( l / L , t ) .  Studying the behaviour of the scaled gap in the neighbourhood of the 
fixed point gives us insight into the renormalition flow. The choice Z = L in (14) 
leads to the finite-size dependence of the scaled gap I (  L ,  t )  expanded in powers of 
t 

Thus the relevance of t ,  Le. the sign of y, determines whether I(L, t )  converges to, 
or diverges from x for increasing L. 

Differentiating (13) and (14) with respect to t and taking I = L gives 

f ( j ) ( l / L ,  t )  = g( j ) ( I /L ,  t )  + Ljy'-df(j'(l, LY't) (16) 

c - l ( j ) ( l / L , t )  = LjYt - lE- l ( i ) ( l ,  LYlt) (17) 

where ( j )  denotes the jth derivative with respect to t .  

finite sizes L yields, via @)-(U), series of estimates of c and x. 
Thus numerical evaluation of the two largest eigenvalues of T for a number of 
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Other exponents can be obtained by numerically differentiating the free energy 
and the inverse correlation length. The numerical ditferentiation of a function 
F at a certain point t is performed as follows. We calculate F(t + At) for 
At  = 0, f t r ,  &:Ate, f$tq where e fixes the interval of the numerical 
differentiation. Since F is analytic, we may apply a ’Bylor expansion 

F(1+ A t )  = F”)(t) + AtF(’)(t) + ;(At)’F(’)(t) + . . . . (18) 

Fitting the unknowns F(’) on the basis of the numerical data leads to estimates of the 
first and second derivative of the function F. The problem is to determine that e for 
which the combination of errors, made by neglecting the higher-order terms in (18) 
and the numerical inaccuracy due to round off errors, is minimal. This minimum is 
estimated on the basis of a series of values of e which differ, for reasons of efficiency, 
by a factor of 4 per step. 

By fitting (16) and (17) to the data for the first and second derivative of the free 
energy and the inverse correlation length for a number of finite sizes L we obtain 
a series of estimates for the critical exponent yl. Inaccuracies introduced by the 
expected corrections to scaling can be reduced by means of iterated fits, described 
e.g. in [12], of the series of estimates of yt. The new series are expected to converge 
faster. Iterated fits are also made for the conformal anomaly c and the scaling 
dimension I. 

4. The phase diagram 

In order to determine the phase diagram in the self-dual plane, we apply finite- 
size scaling to results obtained by the transfer-matrix technique. At constant d u e s  
of P’, calculations are performed at small intelvals of A’. We have located some 
phase transitions, and determined their nature from plots of the scaled gap versus 
A’, for finite sizes L < 5. To obtain more precise locations, critical exponents and 
the conformal anomalies at these transitions, we have performed calculations up to 
L = 9. 

The results are, in summary, as follows. We found, for values of q in the range 
0 < q < i, a Potts tricritical line which turns first-order at what may be called a 
tn-tricritical point. This point agrees with the locus of the exact solution presented 

and 4 we have located a first-order line and a tricritical 
line. The numerical data still suggest that they connect. In this range of q the exactly 
solvable point is not critical anymore, thus it is no longer a good candidate for 
the tri-tricritical point, unless that transition itself has turned first-order. However, 
within our numerical accuracy, we were unable to distinguish the exactly solvable 
point from the point where the fust-order line and the tricritical line meet. Neither 
could we discern new structures in this neighbourhood of the phase diagram. In the 
absence of an exact solution describing a multicritical point, we have to conclude that 
the scenario proposed for q < :, however plausible, is not necessarily applicable to 

For q greater than 4 we have located a line of first-order transitions which ends 
in an Ising critical point. This point does not coincide with the exactly solvable point. 

These results are summarized in figure 3, the phase diagram in the self-dual plane. 
Numerical evidence of these statements is given below. 

‘in p7-J. 
Also for q between 

: < q<4.  
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0 0.1 0.1 0.6 0.8 1 1.1 1.1 
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Figure 3. The phase diagram in the self-dual plane for several values of q. ?he a w e s  
are labelled with the pertinent q-value. Tbe double cuwes denote Brst-order transitions, 
the single m ~ e s  kicritical transitions. The Kasterlifz-Thouless transition fm q = 4 is 
shown as a dotted cum; in this case the uncertainties of A& are ialher large due to slow 
finitesize mnvergence. The location of the exactly solved point (see PA) is indicated Ly 
the msses and thal of the Qlculated Ising-like critical point (neglecting the interaclion 
benueen the bonds) ty the plusses 'lhe rectangles denote the numerically determined 
Ising critical pints; the widths of the reetangles denote the ermr bars. 

4.1. Number of stales < 4 

4.1.1. the first-order uansifion. The first-order transition in the self-dual plane is one 
between a critical Potts state and an ordered state dominated by vacancies or frozen 
faces. Therefore the leading finite-size dependence of the free energy of a critical 
Potts state (10) has to be taken into a w u n t  The intersections of the scaled gap do 
not converge to zero, as usually is the case for a first-order transition. See figure 4(a) 
and 4(b). We have determined this scaled gap for several values of q; they are listed 
in table 1. 

Table l. The mnformal anomaly of the critical Polls model for several values of q, 
determined at the first-order transition. 'lhese results are oblained from the mnvergence 
point of the intemections of the sraled gap for successive !jnite.sizes L in figures like 
figures 3 and 4. Estimated uncertainties in the last decimal places are given berween 
parentheses. Also the analytical value for the mnformal anomaly is given. These results 
mnfirm that the first-order transition is one between a critical Potts state and a non- 
critical one. 

q 0.5 1.0 20 225 3.0 4.0 

C -0.4qi) o.w(i) aso(i) o.s8(i) o.si(1) i.oi(i) 
c(exac1) -0,4458 0 vz 05876 4l5 1 
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Figure 4 The scaled gap as a function of the nearest neighbour vacancies weight A'. 
'The single vacancy weight P' k chosen as 0. The different curves represent 6nite sizes 
L = 2 up to L = 5. Data are shown for (a) q = 4 and (6) q = Z The gaps vanish at 
the dotted curve; a fint-order transition takes place here. 

This gap should be equal to 412, which can be seen as follows. When A' is small, 
P = 0 inhibits vacancies or frozen faces from being present Thus the gap is that of 
the pure Potts model and does not depend on A'. But when A' is increased above a 
certain threshold, the eigenvalue of T associated with a.state with only vacancies or 
frozen faces will overcome the second largest eigenvalue for A' = 0. The scaled gap 
'is now determined by the free energy difference between the critical Potts state and 
the state with only vacancies or frozen faces. The asymptotic free energy per site for 
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a critical Potts state is given by (IO), where c is the conformal anomaly of the critical 
Potts model, and that for a state with only vacancies is 2 logA'. The scaled gap thus 
behaves as (see (12)) 

L2 C 
z(L,a) = - a +  - 2n 12 

where a = f, - 2 IogA'. For a = 0 the system undergoes a first-order transition 
from a critical Potts state to a state with only vacancies or frozen faces. It follows 
immediately from (19) that the intersections of the scaled gaps converge to c/12 
instead of zero. This is corroborated by the data in table 1. It also follows from 
this equation that, in the neighbourhood of the critical point, the slopes of the scaled 
gaps for systems of size L should be proportional to Lz. Analysing the data shown 
in figures 4(u) and 4(b) it was verified that this is the case. This behaviour is in 
accordance with the discontinuity fixed-point exponent y = 2 associated with first- 
order phase transitions. 

4.1.2. The nicririCal line. At criticality the scaled gap z ( L )  will converge to the 
corresponding scaling dimension (11) with increasing finite size L . Convergence is 
expected to the critical leading thermal exponent z;l of the ordinary Potts model for 
small A and P, and to the tricritical leading thermal exponent zFl at the tricritical 
line . From (15) and the known relevant tricritical second thermal exponents for 
q < 4 it follows that the derivatives of the z( L) versus A' curves diverge. Therefore 
we expect intersections of these curves, converging to for increasing system sizes. 

This is indeed the case, as shown in figure 5(b). For small A the system is in 
a critical Potts state. The scaled gap converges to the critical Potts temperature 
exponent zP1 ( = 1 for q = 2). The slopes of the scaled gap versus A cuwes are 
asymptotically proportional to LY (see (15)), where y = 2- z is the renormalition 
exponent of the fixed point governing the flow. Thus the way in which the slope 
depends on the successive system sizes indicates that the renormalization flow is from 
the Uicritical point to the critical point Therefore the scaling exponent yt in (U) is 
relevant; the scaled gap diverges from the tricritical fixed point for increasing L. For 
q = 4 (figure S(c)) yt is marginal so that the scaled gaps are parallel for successive 
system sizes. This result confirms the renormalization flow scenario for the dilute 
Potts model proposed in [l]. 

For q = 1/2 (figure 5(u)) we noticed that for some values of A the second- 
largest eigenvalue is complex, which means that the correlation function ascillates. 
This effect may disappear in the thermodynamic limit. 

For an accurate determination of c and zz, it is desirable to calculate f and E-' 
at a point where the corrections to scaling are small. 'Ib this purpose we have selected 
P such that the finite-size dependence of the intersection points is small. This occurs 
near P ' / P * / ~  = 1.4. The corresponding value of A is determined as follows. Draw 
a horizontal line near the fixed point in figure S(u) and 5(b). The intersections of 
the scaled gaps with this line will converge to A, with increasing system sizes . The 
nearer the horizontal line is to the scaling dimension, the better the convergence to 
A, is. We have used the Coulomb gas prediction for the scaling dimension z% and 
solved A from r (A ,  L) = z:. With iterated fits we have estimated A,. The results 
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Figure 5. The staled gap as a function of the vacanq-pair weight A'. The weight of a 
single w c a n q  P'/q1I4 i chosen as 1.4. Data are shown for (e) q = 4 , @) q = 2 and 
(c) q = 4. The different CUNES %present finite dzer L = 2 up la L = 5. For q = 4 
data are shown up fo L = 7; the staled gap decreases with the Bnite size. The dotted 
C U N ~  indicale that the semnd eigenvalue is complex. 

are shown in table 2. This way to determine A, and the tricritical exponent is not 
suitable for q = 4 because a z ( L ) / a A  does not diverge for L -4 CO at tricriticality. 
Therefore for q = 4 we determined A, by requiring that the scaled gaps are parallel 
for two successive system sizes, ie. the point where the second thermal exponent 
becomes marginal. Results from L = 2 to 9 and the iterated fits are shown in 
table 2 Free energies and scaled gaps were calculated at these points. Iterated fits 
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L.6 1.8~ 2 2 .2  
A'  

Figure 5. (Continued) 

Table 2 Points at the Vicritical line for sweral value for q where the mrrections to 
sealing are almost minimal For q = 1 we wed finite-size results up to Z = 14, for 
the other q values up to Z = 9. Estimated numerical uncerfainties in the last decimal 
places are given between parentheses. 

2387849f2) 
27816X11 

Table 3 Numerical and analyxical results for the mnfomal anomaly and the yaling 
dimension for the hicritical Potts model for several values of q. ' Ihe numerical results 
are obtained with an iterated fit procedure, using the finite-size mults  br the free 
energy and the scaled gap. ?he transfer-matrix calculations were done at the hicritical 
line for P'/q114 = 1.4. Estimated numerical uncertainties in the last decimal places are 
given between parentheses. 

q c =(exact) .:lc.Ma) 

1 O.SoOo(2) m 0.12500(5) ys 
2 0.7oOo(2) 7/10 o . m ( s )  v5 
LZS 0.74zop) 0 . 7 4 1 ~  O.ZI~SO(S) aziw 
4 l.ooOo(2) 1 osaoo(z) l/z 

0.5 0.3550) 0.35795 0.0828(2) 0.08305 

3 0.8572(2) 617 02857(1) V7 

according to (10) and (11) yielded the estimates of c and cs as shown in table 3. 
The analytic expressions for the two leading thermal exponents of the Potts model 
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found by Nienhuis [2], using a Coulomb gas method, are 

ytl = 3 - 3t 

ytz = 4 - 8t 

where 

The conformal anomaly is given by [6, U] 

(23) 

Equation (22) has two solutions for t. The case t > 2 describes the Potts critical 
behaviour and t < $ the hicritical Pot$ behaviour. The tricritical solution is the 
analytic continuation of the critical solution. "he analytic predictions for c and 
are also shown in table 3. 

'Isbk 4 Numerical and analy&xl data for the semnd thermal aponent of the tricritical 
Potts model for several values of q. The numerical results were obtained an iterated 
6t pmcedure using numerical derivatives of the free enngy and the i n v e  mrrelation 
length with &pest to A. Estimated numerical uncertainties m the last decimal paces 
are &en behveen parentheses. 

1.0 1.4 l.&b) 1 
1.5 l.W(l) I.aaOa(5) l.oOw(2) - 

20 1.4 O.SOO(2) 
~ 0.79(1) 0." 

1.5 OSW(1) 0.795(5) o.m(z) 
4 5  

0.74811 
- 

225 1.4 0.750(2) 0.74(1) 0.746(2) 
1.5 0.749(11 0.7500) a 7 4 m  - ., 

3.0 ' 1.4 05747.j - a5-73izj 4n 
15 057741) - - 

obtain more exponents we have numerically differentiated f and C-l with 
respect to A at the tricritical point as already determined. Using (16) and (17), and 
iterated fits we have found the exponent governing the crwover to ordinary Potts 
critical behaviour. It is identilied as the second thermal exponent (21). These results 
are shown in table 4. No results are presented for the fits of the first derivative of 
the free energy. Because of the influence of the finite-size dependence of the non- 
singular part of the transformation (16) convergence is poor and no accurate results 
are obtained. For the second derivative of the free energy the finite-size dependence 
of the second part of the right-hand side of (16) is stronger. Thus the influence of 
the non-singular part decreases and we obtain good convergence. 

The results in tables 3 and 4 are in perfect agreement with the predicted tricritical 
thermal exponents, thus co~rming  that we have found the hicritical line. 
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4.1.3. The tri;tricrirical point. A number of tri-tricritical exponents was calculated 
exactly in [17]. Using the parametrization introduced in that paper, the exponents 
are 

~ k ’ - l  xu = 
2h(h - I) 

where 
7r h =  

arcccs(A/Z) 

with 

q = (A - A-’)’ 

and 

(27) 
h k = - arccos(A’/2) 
x 

with A‘ = l /A, - l /A, -A.  
As explained in [17] the Boltrmann weights are functions of A and q. Equation 

(26) gives four possible solutions for A, describing distinct solvable models. Thus 
four branches can be defined (see [17, equation (14)l). Branch 1 corresponds to the 
interval A > 1, branch 2 to 0 < A < 1, branch 3 to -1 < A 6 0 and branch 4 to 
A < -1. Only at branch 1 are the Boltzmann weights positive; therefore it is the 
only physical branch. 

The numerical evaluation of the two largest eigenvalues of the transfer matrix for 
a number of finite sizes L yields, via (8)-(11), a series of estimates of the conformal 
anomaly c and an energy-like scaling dimension I. However, we have to reckon with 
the possibility that a scaling dimension z becomes negative, such as occurs e.g. in 
O ( n )  models [12,14,15]. Then, the amplitude of the largest eigenvalue no longer 
corresponds to the conformal anomaly. Therefore it is more convenient to describe 
the linite-size amplitude of bath ‘free-energy levels’ f , (L )  (i = 0, l )  on the Same 
footing by appending indices i to f and c in (lo), and to postpone an identification 
of the amplitudes in terms of c and x. 

The finite-size calculations were performed for several values of q on branches 1 
to 4, and for system sizes L up to L = 9. For q = I, simplified transfer matrix 
calculations (see the appendix), yielded data up to L=14 on branches 1, 2 and 3. On 
branch 4, the largest eigenvalues, as obtained with the algorithm for general q, are 
missing in the eigenvalue spectrum of the simplified matrix. 

The results were subjected to fits in accordance with (10). The accuracy benefits 
from the fact that f(m) is known from the equivalence of the loop model [17, 
equation (28)J with the &vertex model solved by Lieb [16]. The reduced free energy 
per Potts site is 

(28) 
sinh[7rt(h- l)/h]tanh(nt/h) dt 

tsinh(7rt) 
1 
2 f (m)= - l o g q + 2  

with h given by (25). Best estimates in terms of co and c, are shown in table 5, 
together with estimated uncertainties. The last entry for c, is not the analytic 



510 Y M M hops ,  H W J Bl&te and B Nienhuis 

lhbk 5. Numerid mults far the finite-size amplitudes of the logarithms of the two 
largest eigenvalues of he transfer maUix. These amplitudes mntain a factor 61" (see 
(10)) so that, when appropriate, Ihey may be interpreted as the conformal anomaly. 
Estimated uncerIainIies in the last decimal places are given between parentheses. 

branch 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
4 
4 
4 
4 

- a 
225 
2 

- 

15 
1 
05 
02s 
OX 
05 
1.0 
15 
20 
25 
3.0 
4.0 

16.0 
16.0 

4.0 

ao 

ao 

CO 

0.9560 (2) 
0.8438 (1) 
0.7MHM (1) 
05woO (5) 
035345 (5) 
02.571 (1) 
0.3902 (1) 
0.6owO (1) 
0.7745 (1) 
0.9286 (1) 
1.0683 (2) 
1.1972 (2) 

l.c@3 (9 

l.4300 (2) 
21m (5) 

2 4 2  (1) 

3.161 (1) 
3513 (1) 

15615 1% 
3.0 
25 
20 
1.5 

1.2650 izj 
1.0935 0) 
0.9wo (I) 

1.0 0.4ooooaa(l) 
as 0.0259 (ij 
0.25 -0.25~3 (1) 
0.25 -1.9839 (1) 

0.6750 (1) 

0.5 -25568 (1) 
1.0 -3.8001 (2) 
15 -5.758 (1) 

c1 

-0.1 (1) 
-ai4 (9 
-0.18 (2) 
-0.201 (l) 
-0.1862 (2) 
-0,1534 (1) 
-0.3251 (2) 
-0.4458 (2) 
- 0 . m  (2) 
-0.7052 (2) 

-0.904 (1) 
-0.532 (1) 

-0.7856 (2) 
-0.8505 (5) 

-1.198 (1) 
- 1.387 (1) 
-2751 (1) 
-3.052 (1) 

-3.6231 (5) 
-3.439 (1) 

-3.7455 (5) 
- 3 . m  (2) 
-4,1052 (2) 
-4.4ww (1) 
-4.8953 (2) 
-5.3485 (2) 
-7.4794 (5) 
-8.078 (1) 
-9.800 (2) 
-1.044 m 

continuation of the other c1 data for branch 4: level crossing occurs between q = 1 
and q = 1.5. 

As is shown in [17] the numerical data for cu and c1 at branch 1 are in perfect 
agreement with the largest two of the four theoretical amplitudes. Therefore the 
identification of the corresponding exponent (A' = l /A in (24)) as the leading 
thermal exponent is justified. At the other branches the computed q, and c, also 
agree with the theoretical amplitudes, but not always with the largest two (see [17, 
figure 31). 

In order to determine the exponent describing the crossover to ordinary Potts 
critical behaviour we numerically differentiated f and 5-l with respect to A at 
branch 1. Results of iterated fits are shown in table 6. The numerical values for the 
second thermal exponent are in agreement with the analytic exponent in (24) with 
A' = -I/A. Thus we have found an identification for another of these analytic 
exponents. 

4.2 Number of states > 4 

In the thermodynamic limit the ordered and the disordered Potts state are in phase 
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Tnbk 6. Numerical and analytical data for the semnd thermal exponent of the ui- 
uiaitical Potls point for several values of q. Ihe numerical mults  wen obtained by an 
itcratcd fit procedure using the data of the numerid differentiation of the ks energy 
and the inverse "elation length with respect to A. EFtimatd numerial uncertainties 
m the last decimal places are giMn between parentheses 

P yf2 from €-I(') g: from .+') yfz from fiz) yr2(aact) 

0,s l.WO(l) 1.797.c) 1.788(2) 1.7895 
1.0 1.8ooo(2) 1.803(2) 1.799(2) 915 
20 1.81111 1.82f11 1.8213) m/11 
225 l..&(i) l.S$l) 1.826) 1.8316 

equilibrium at the self-dual plane. For finite sizes L the ordered state is more stable 
than the disordered state. Since the computer program calculates only the two leading 
eigenvalues, it fails to calculate the desired gap, namely that between the ordered 
Potts state and the state dominated by frozen faces (which is degenerate with the 
state dominated by vacancies), for most values of A' (see figure 6). If the range 
of A, where the right gap is calculated, is too small the location of the first-order 
transition cannot be found accurately. Therefore we have calculated all eigenvalues 
of the transfer matrix. Since this is much more time consuming we have restricted 
the finite sizes to L < 5. 

A' 

F@re 6. Schematic picture of the eigenvalues of the ordered Potts state A,, the 
disordered Potts state As and the degenerate states dominated by frozen faces or 
vacancies A, as function of the nearest neighbour b z e n  faces weight A' for q > 4. 
The full NIV- are for a finite size L smaller than that of the broken c u m  L'. For 
larger tinite sizes the difference between A. and Ab temmes smaller, until, m the 
thermodynamic limit, it disappears. This figure demonstrates that, on the basis of a 
calculation of the lwo leading eigenvalues. the scaled gap between the ordered Potts 
state and the state dominated by b z e n  faces is found only in a ~ r m ~  range of A' 
where A, > Ae > ,!b. 
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For q >i 4 and small P' we expect a iirst-order transition when the weights w1 
and wg are approximately equal (see section 1). Thus at the first-order transition the 
weight of A' is 

A;, M + 1. (29) 
From figure 7(u) it can be seen that this is the case. This figure is made on the basis 
of the two leading eigenvalues only. 

0.3 
lo)  

0.2 

XIL l  

0.1 

0 

L=3 

- 

- 

- L=4 

LC5 

15.2 16 16.8 17.6 

Figure 7. Scaled gaps as function of the nearest neighbour vacancies weight A' for 
q = 256. (U) The weight of a single vacancy P' is set equal to 0. The scaled gap is 
calculated for finite sizes L = 3, 4, 5. The horizontal paas of the full cuwes Epresent 
the =led gaps between the ordered and the disordered Potts state. the remaining parts 
are the scaled gaps between the ordered Pot& state and the state dominated by frozen 
faces. The full awes are obtained from the two leading eigenvalues The broken curves 
represent also the scaled gaps between the ordered Potts state and the state dominated 
by f r aen  faces They are calculated using the first and the third eigenvalue. The 
mtewtions of the broken a w e s  mnverge to a scaled gap 0 and to that A' where the 
tirst-order transition takes plan. (b) The weight of a single vacancy P' is set equal to 
0.11, in the neighbulhood of which we expect an king aitical point. The scaled gap 
b that between the ordered Potts stale and lhe state dominated by frozen faces. It is 
calculated for finite size L = 4, 5. Here the scaled gaps behave in a way consistent 
with wnvergence to z = 8 .  (c) Is the Same @), only the weight of a single vacancy 
P' is set equal Io 0.125. 

We expect the king critical point in the neighbourhood of (see section 1) 

Ah =&+ 1 

Figures 7(b) and 7(c) confirm this. For P' M Pf, the intersection is in the 
neighbourhood of the king exponent zh = 1/8, and for P' > Pjj there is no longer 
any intersection. These figures use data from the extended eigenvalue spectrum. 
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0.1 
16.32 1 6 . 6 4 .  16.96 ~ , 17.28 17.6 

A’ 

0.2 L I 
16.12 16.64 16.,96 17.28 17.6 * 

Figure 7. (Continued) 

5. Conclusions 

We have investigated the phase diagram in the self-dual plane of a Potts model with 
vacancies and &spin interactions by means of finite-size sotling and transfer-math 
techniques. We observe, for all g, a first-order line between a phase or phases 
dominated by Potts variables and phases dominated by vacancies or frozen faces. For 
0 < q < the transition line between the Potts states and the states dominated 
by vacancies or frozen faces also has a tricritical range, sepafited from the first- 
order range by a tri-tricritical point Fbr q > 4 the first-order transition ends in an 
king critical point. We have located these transitions and determined some critical 
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exponents and the conformal anomaly at the tricritical line and at the tri-tncritical 
point for several q-values. 

< q < 4 does not seem 
qualitatively Werent from that for q < $. We have located a part of the first- 
order transition and the tricritical line, but in the absence of an exactly known 
multicritical point it is only approximately known where they connect. On the basis 
of the numerical results, we cannot exclude that the first-order line and the tricritical 
line connect qualitavely the same way as for q 4 2, i.e. in a tri-tricritical point 
However, in that case one would expect that the exact tri-tncritical exponents found 
in [17l could be analytically continued for q > 2, which is not the case. As for other 
possible scenarios, we can only speculate in the absence of hints from the numerical 
data. An obvious possibility is that the hi-tricritical point itself becomes first-order, 
going along the path defined by the hicritical and the first-order line. On the basis of 
continuity, one expects that this transition is part of another first-order line. Another 
possibility is that the tricritical line does not connect to the end-point of the first-order 
line, but to wme other point of that line (in a tricritical end-point). Unfortunately, 
the resolving power of our computational methods is insufficient to investigate these 
possibilities. This remains a problem for the future. 

Y M M khops, H W J BBte and B Ninhuis 

The phase diagram in the selfdual plane for 
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Appendix. An enumeration of connectivities 

The calculation of free energies and correlation lengths of L x CO Potts models 
described by the partition function (2) by means of a transfer matrix for continuous 
values of q requires a mapping of the ‘connectivities’ described in section 2 on the 
positive integers 1,2,3, .  . .. An ordering of these connectivities can be obtained using 
the following criteria, in decreasing order of importance: 

1. 
2 
3. 
4. 
5. 

the number of Erozen faces, 
the number of vacancies, 
the positions of the frozen faces, 
the positions of the vacancies, 
the way in which, after elimination of the frozen faces and the vacancies, the 
remaining points are interconnected. 
This ordering constitutes the key ingredient of an algorithm enumerating any 

given L-point connectivity. As a first step towards such an algorithm, we represent 
the connectivity (see figure Al) by means of a row of L integers (plr p 2 ,  p , ,  . . . , p , )  
such that 
1. p k  = 0 if and oniy if there is a vacancy on point IC, 
2. Ipj I = lpkl if and only if point j is connected to point IC, 
3. p j  < 0 if and only if there is a frozen face between point j - 1 and point j .  
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Figure Al. Illustration of the definition of the mnnectivities by means of an arbitray 
configuration of bond, site and face variables on the quare lattice with periodic 
boundaries (broken curves) in one direction. Vacancies are represented as open drcles, 
occupied sites as full circles. F m m  faces are s h m  as mosses, fa- that are not G a e n  
are not indicated. The presence of bond variables between neighbouring sites is indicated 
by means of full “es. All information needed to obtain the Boltzmann weight when 
a new mw is appended to the lattice, can be represented graphically (above). It is 
also shown bow the mnnectivity can be represented bf a Tow of integers The Same 
definition of.the mnnedivities applies between h e  spame-matrix multiplications described 
in section 2, i.e. when the topmost Tow is inmmplete. 

The coding of a connectivity by a row of integers is illustrated in figure Al. It is 
not a one-to-one correspondence because the choice of the absolute values of the 
integers is quite arbitray. Our algorithm for the enumeration of an array of integers 
p b  (k = 1,2, .  . . , L) involves the definition of three auxiliary arrays: 

1. An array f, ( j  = 0,1,2,. . . , L - n, - 1) describing the positions of the frozen 
faces after elimination of the points that are vacant ( p k  = 0). Consider an 
occupied point j ( p i  # 0) and. let the number of mcancies ( p k  = 0) for k < j 
be y. Then fj-vj-l = 1 if pi < 0 and fj-vj-l - - 0 otherwise. Since the set of 
distributions of the vacancies depends on whether or not the face between points 
1 and L is frozen, we will consider these two cases separately. In either case the 
zeroth element f, is known, and the remaining elements are stored in the array 
f = (fl,fi,. . . ,fL - n, - 1) with precisely nf - fu ones. 

2 An array vi (j = 1,2, .  . . , L - nf) describing the positions of the vacancies after 
elimination of the frozen faces. Consider a non-frozen face j ( p ,  > 0) and let 
the number of frozen faces (pk < 0) for k < j be 5. Then = 1 if p ,  = 0 
and f j m F j  = 0 otherwise. The case when the face between points 1 and L is 
frozen (pl < 0) is special because the Lth point cannot be vacant (pL # 0), so 
that an array of length L - nf - 1 suffices to d e  the positions of the vacancies. 
Adopting this choice, there are no restrictions concerning the distribution of the 
ones withim the arrays f and II. 

3. An array wj ( j  = 1,2, .  . . , L-nf-n,) describing the way in which the remaining 
points are connected after the elimination of the vacancies and the frozen faces. 
The elements are defined as wj-b-Fj = p j  for those j satisfying pj > Q An 
enumeration of these ’simple Whitney connectivities’ is given in [4,12]. 
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Thus the information contained in the row p can equivalently be expressed by fu, f, 
11 and w. The total number of L-point connectivities with precisely ny vacancies and 
nf frozen faces is 

Y M M fiops, H W J BBte and B Nienhuis 

(A1) 

The first term between braces is the number of ways in which the vacancies and 
the frozen faces can be distributed such that the face between pints 1 and L is 
not frozen. The second term accounts for the remaining number of distributions. 
The factor outside the braces is the number of simple Whitney mnnectivities on 
L - ny - nf points. It is given by [4,12] 

c, = (2m)!/{m!(m + l)!}. (A2) 

Thus the total number of L-point mnnectivities is 

Tabk Al. Numben of L-point mnnedivit is  The semnd mlumn (CL) shows the number 
of simple Whitney mnnenivities which applies Lo the Potts mcdel without vacancies and 
hce variable. The third mlumn ( b L )  contains numbers of 'simplified mnnectivities' 
which desaibe only the positions of the vacancies and the frozen face$ excluding the 
PotIs degrees of freedom. Tney apply to the q = 1 Potts model. The last mlumn 
mntains the number of mnneclivilies derived in this appendix for the general-q Pots 
model with vacancies and hce variables. 

L CL 

1 1 
2 2 
3 5 
4 14 
5 42 
6 132 
7 429 
8 1424 

bL U L  

3 3 
7 8 
18 28 
47 112 
123 484 
322 22w 
843 10364 
2207 50144 

9 4862 5778 247684 
10 167% 15127 1243826 

The numbers aL are given in table A1 for some values of L, together with similar 
numbers for the Potts model without face variables, with and without vacancies. An 
enumeration of these uL connectivities requires enumerations of the arrays f ,  w and 
w. For f and w this is simply realized by means of a function + acting on a row i 
of m integers with j zeros. This function is recursively defined as 
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if j = 0 or m = 1 I 1  

An enumeration of the simple Whitney connectivities is already available by means 
of a function u(w) defined in [4]. Furthermore, we impose the rule that the 
connectivities with the lower number of frozen faces come first. Among connectivities 
with the same number of frozen faces, those with the lower number of vacancies come 
first. The number of mnnectivities which, on this ground, precede a connectivity with 
precisely nf frozen faces and n, vacancies, k 

We can now assign a unique number a to an L-point connectivity represented by an 
array p = plr p 2 , .  . . ,pm with precisely nf frozen faces and ny vacancies. If the face 
between points 1 and L is not frozen, the number is 

a ( p )  = aL,nr,n, + {($U) - 1) (" ivnf) + - 1 CL-nt-n, + u(w). ( ~ 6 )  

If the face is frozen, the number is 

An inverse algorithm can be defined by similar methods. 
For q = 1, the weight of a loop in a randomcluster configuration is unity, so that 

one may attempt to calculate the free energy by means of a simplified transfer matrix. 
The degrees of freedom due to the 'simple Whitney connectivities' can be suppressed 
by using u(w) = 1 and cL = 1 instead of the definitions given above. This leads to 
a considerable decrease of the number of connectivities (see table Al) so that larger 
values of the finite-size parameter L come within reach. In this way one may hope 
to obtain a significant part of the eigenvalue spectrum of the non-simplified transfer 
matrix. 
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